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ABSTRACT

Raw DNA sequences contain an immense amount
of meaningful biological information. However, these
sequences are hard for humans to intuitively inter-
pret. To solve this problem, a number of methods
have been proposed to transform DNA sequences
into two-dimensional visualizations. DNAvisualiza-
tion.org implements several of these methods in a
cost effective and performant manner via a novel, en-
tirely serverless architecture. By taking advantage of
recent developments in serverless parallel comput-
ing and selective data retrieval, the website is able
to offer users the ability to visualize up to thirty 4.5
Mb DNA sequences simultaneously using one of five
supported methods and to export these visualiza-
tions in a variety of publication-ready formats.

INTRODUCTION

As DNA sequencing technology becomes more common-
place, tools for the analysis of its data are among the most
cited papers in science (1). The reason is simple: DNA se-
quences are, by themselves, almost completely unintelligible
to humans. Seeing meaningful patterns in DNA sequences
(which are often too large to be shown in their entirety on
a screen) is a significant challenge for researchers. Numer-
ous tools, ranging from genome browsers (2) to multiple se-
quence alignment viewers (3) and dot plot visualizers (4)
have been developed to enable interactive browser-based
visualization of DNA sequences, alignments, and annota-
tions. A different approach to addressing this problem is to
convert DNA sequences directly into two-dimensional vi-
sualizations that capture some aspect of the biological in-
formation contained within, without relying on external in-
formation such as annotations. This approach has the ben-
efit of taking advantage of the highly developed human vi-
sual system, which is capable of tremendous feats of pattern
recognition and memory (5).

A variety of methods have been proposed to convert
DNA sequences into two dimensional visualizations. One
common technique is to map each nucleotide to a vector
and connect those vectors tip-to-tail to represent a DNA se-
quence. For example, the Gates method (6) uses up, down,
left, and right vectors of length one to represent Ts, As,
Cs, and Gs, respectively, while the Yau method (7) uses
vectors along a unit circle to represent the bases. Others,
such as Qi (8) and its derivative Squiggle (9) algorithm are
based on mapping a binary representation of the sequence
to upward- and downward-oriented vectors for 1s and 0s,
respectively. In contrast, other algorithms such as (10) and
(11) are based on tablature, with the x coordinate corre-
sponding to base number and the y coordinate to a specific
nucleotide or dinucleotide, respectively. These methods are
highly heterogenous, but, for the sake of this paper, we will
only discuss methods with no degeneracy, i.e. methods that
produce visualizations which may be unambiguously trans-
formed back into the DNA sequences from which they were
generated. All of these methods operate on a single underly-
ing principle: they map each nucleotide in a DNA sequence
to one or more points in the Cartesian plane and treat each
sequence as a walk between these points.

One effect of mapping each base to at least one point is
that the number of points grows linearly with the length of
the DNA sequence. This poses a technological challenge,
as the ability to sequence DNA has vastly outpaced tools to
visualize it. Indeed, there is currently a dearth of DNA visu-
alization tools capable of implementing the variety of meth-
ods that have been introduced in the literature (9,12,13).
Taking inspiration from DNAsonification.org (14), which
allows for the auditory inspection of DNA sequences, we
propose DNAvisualization.org to fill this gap in the web-
based visualization toolset.

METHODS AND RESULTS

Interface

The user interface for the tool is deliberately simple. A
user first selects one or more visualization methods from
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the five currently implemented by the Squiggle pack-
age (6,7,9,10). The user then provides FASTA-formatted se-
quence data to visualize, either by using the operating sys-
tem’s file-input prompt, dragging-and-dropping files onto
the browser window, or pasting the raw data into a text
prompt. Upon receipt of sequence data, a loading spinner
indicates that the system is processing the data. After the
data processing is complete, the loading spinner is replaced
with the two-dimensional visualization.

The initial view is such that the entirety of each sequence’s
visualization is visible: every part of every sequence can be
seen. This poses an immediate challenge, as comparing se-
quences of vastly different lengths will result in the smaller
sequence being so small as to be essentially invisible. To
solve this problem, the tool allows users to toggle the visibil-
ity of sequences by clicking on the corresponding legend en-
try, which will automatically rescale the visualization’s axes
to fit the displayed sequences. The legend coloring is dy-
namic as well. The user may decide to color code the leg-
end either with each sequence (shown in Figure 1) or each
file in its own color (shown in Figure 2) and toggle between
options after the data has been plotted, allowing for both
inter- and intra-file comparisons.

To inspect a region of the visualization more closely, a
user may click and drag over it to zoom in. When zoom-
ing in, a more detailed visualization is shown by asyn-
chronously retrieving data for the region, allowing for base-
pair resolution analysis. With a single click, the axis scaling
may be reset to the default zoom level.

The title and subtitle of the visualization are dynamically
set but may be overridden at any time by the user. If the user
wishes, their visualization may be downloaded in one of
several formats suitable for publication such as SVG, PDF,
JPG and PNG.

DNAvisualization.org supports color coding each se-
quence or file individually.

Implementation

The web tool is built using a novel architecture, with com-
puting, as well as data storage and selective retrieval, done
in an entirely serverless manner. To understand how this
system differs from a traditional architecture, consider a
traditional approach to building the DNAvisualization.org
tool. A server, usually running Linux or Microsoft Win-
dows, is established to handle HTTP requests to the website.
This server is either maintained by a university or, increas-
ingly often, a cloud service provider. If there are no requests
(as can be expected to be a nontrivial fraction of the time for
low-traffic web tools), the server sits idle. When requests are
submitted, the server responds to each one. If the server is
at capacity, requests may go unanswered or, with additional
complexity, more servers may be requested from cloud ser-
vices provider to meet the greater demand. Data storage is
usually provided by a relational database management sys-
tem (RDBMS), which must also be running on a server.

This paradigm has several disadvantages: disruptions to
the server result in disruptions to the website, greater exper-
tise is required for the development and maintenance of the
website, the server wastes resources while sitting idle, and

the server’s computational and storage capacity is directly
limited by its hardware.

A new model has been introduced called serverless com-
puting or Function-as-a-Service (FaaS) that is able to solve
these problems. The basic idea is that a software developer
specifies code to be executed (i.e. a function) and then in-
vokes it on varying inputs. In fact, the name ‘serverless com-
puting’ is a misnomer: the computation still occurs on a
server, just not one the developer is responsible for man-
aging. Instead, the cloud service provider is delegated the
responsibility for the execution of the code, thus enhanc-
ing developer productivity (15). In this model, the pricing is
calculated by function invocation, typically metered to the
tenth of a second. When not being used, there is no cost to
the user. On the other hand, if there are numerous simulta-
neous function invocations, each invocation is handled sep-
arately, in parallel.

By making the serverless function a virtual ‘server’ and
invoking the function upon each individual request, one is
able to take full advantage of serverless computing. For each
request to the website, a virtual server is created for just long
enough to respond to the request and then immediately ex-
tinguished. This results in the website being able to instantly
scale to use precisely the resources needed to meet demand.

At the time of this writing, there are a variety
of serverless computing platforms including (but cer-
tainly not limited to) Amazon Web Services (AWS)
Lambda (https://aws.amazon.com/lambda/), Google Cloud
Functions (http://cloud.google.com/functions/), and Mi-
crosoft Azure Functions (https://azure.microsoft.com/en-
us/services/functions/), each of which differ in terms of fac-
tors such as supported programming languages, startup la-
tency, and pricing structure (16). DNAvisualization.org is
built atop AWS Lambda due to its permanent free tier that,
at the time of this writing, allows for one-million free func-
tion invocations totaling up to 3.2 million seconds of com-
pute time per month, which is anticipated to easily meet
the demand for the site. In the event that the free tier is ex-
ceeded, AWS Lambda’s pricing is $0.20 per million func-
tion invocations and $0.00001667 dollars per GB-second
of computation (one GB-second corresponds to using a
Lambda function with 1 GB of RAM for one second) at
the time of this writing.

For DNAvisualization.org, we use AWS Lambda to
serverlessly transform submitted DNA sequences into their
visualizations in parallel, in addition to serving the static
assets (i.e. HTML, Javascript, and CSS files) to the user.
The site uses Python’s Flask web microframework (http:
//flask.pocoo.org) and has its deployment to AWS Lambda
seamlessly automated by the Zappa tool (https://github.
com/Miserlou/Zappa).

It must be noted that using a serverless architecture to
host a website is not novel by itself. Rather, the novelty of
the architecture lies in its combination of serverless comput-
ing for request handling with query-in-place data retrieval
on compressed data. As mentioned previously, a normal
web architecture would use a server running a RDBMS to
handle data storage. In the case of DNA visualization, the
database would be used to persist the transformed DNA se-
quences as x- and y-coordinates that may be queried when
zooming in on a region. However, using a database server

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/W

1/W
20/5512090 by guest on 04 January 2020

https://aws.amazon.com/lambda/
http://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
http://flask.pocoo.org
https://github.com/Miserlou/Zappa


W22 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

Figure 1. Sequence mode.

creates many of the same issues as using a server for web
hosting, such as scalability, cost, and parallelism. Instead
of using an RDBMS, we used the S3 cloud storage plat-
form combined with the S3 Select query-in-place function-
ality offered by AWS. In essence, this service allows one to
upload a compressed tabular file to S3 and then submit a
SQL query to be executed against the tabular data. In this
paradigm, pricing is based on the amount and duration of
data storage, the amount of data scanned during querying,
and the amount of data returned by query. At the time of
this writing, the price of storage in S3 is $0.023 per GB per
month (for the first 50 TB of data), with S3 Select priced at
$0.002 per GB of data scanned and $0.0007 per GB of data
returned.

For DNAvisualization.org, each submitted sequence’s
transformation is stored on AWS S3 in the open-source
Apache Parquet tabular data format using Snappy colum-
nar compression. Then, when a user zooms in on a region, a
request is sent to AWS Lambda, which submits a SQL query
to S3 Select, which in turn scans the file for data in the re-
gion. The matching data are then returned to the Lambda
function, which downsamples the data if necessary (to pre-
vent wasting users’ memory with more data points than can

be shown) and returns it to the browser, which then updates
the visualization. This process happens entirely in parallel
for each sequence that the user has submitted, regardless of
how much demand there is on the website, showcasing the
usefulness of serverless computing. The S3 buckets (i.e. fold-
ers) containing the cached DNA sequence transformations
are configured such that twenty-four hours after a user has
submitted a sequence for visualization, its transformation is
automatically deleted, thereby further reducing the cost of
the website’s operation.

An overview of the architecture is presented in Figure 3.

DISCUSSION

Because DNA sequence transformation is an inherently
parallelizable task, the use of serverless computing is a natu-
ral fit for this application. However, not all web applications
for biology are currently amenable to serverless computing
due to the constraints imposed by cloud services providers.

The primary limitation of serverless computing for web
tools is the necessity for a short duration of computation
(currently on the scale of seconds to minutes, depending on
the platform) or, failing that, the ability to parallelize the
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Figure 2. File mode.

computation and the data. In addition, a function’s memory
use may not exceed a predefined limit, which can range from
the scale of megabytes to several gigabytes and be specified
by the user. Applications which violate these requirements
will need significant modifications to this architecture in or-
der to function. An example of a web server that cannot
trivially be ported to use an entirely serverless architecture
is MISTIC2 (17), a tool for protein coevolution analysis,
whose job durations can be as long as five hours. This job
length is significantly longer than any current serverless of-
fering allows a single function invocation to run. However,
as the capabilities of serverless computing increase, the bur-
den of these limitations will decrease. For more information
about the limitations of serverless computing, see (15) and
(18).

These limitations were bypassed by this tool in several
ways, which may be of interest to readers attempting to
implement similar architectures in the future. When imple-
menting parallelization, we were faced with a choice be-
tween higher, file-level parallelization (parsing and trans-
forming each file’s sequences in a separate Lambda function
invocation) and lower, sequence-level parallelization (pars-
ing the files in the browser and invoking a Lambda func-

tion to transform each sequence individually). We initially
chose the former but quickly ran into memory issues, even
when opting to use the most generous memory allocation
available (3008 MB at the time of writing, which includes
all of the function’s code as well as the data on which it
is invoked). To reduce memory demands, we switched to
sequence-level parallelism and eliminated as many depen-
dencies as possible. While this tradeoff results in increased
memory use by the client, which must load and parse the
FASTA files in memory, and greater cost because pricing
is by both the function invocation and the total amount of
computation (which remains the same, as the total number
of bases that must be transformed does not change), it en-
ables greater throughput by more effectively leveraging par-
allelism.

Currently, the website is limited to visualizing up to thirty
sequences of up to 4.5 Mb each for a grand total of 135 Mb
of sequence data at a time. The total sequence count limi-
tation ensures that our chart renderer can handle rendering
all of the points (downsampled to a static 1000 points per
sequence) and the sequence length limitation ensures that
the transforming Lambda function’s memory is not over-
whelmed. In the future, we aim to increase this limit by
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Figure 3. A diagram displaying the flow of information during initial sequence transformation (1) and sequence querying (2). For initial sequence trans-
formation, FASTA files (1A) are parsed in the user’s browser and submitted asynchronously in parallel to the serverless Lambda functions (1B). If the
sequence does not already have an existing transformation using the specified visualization method, the functions transform the sequence and store the
data in AWS S3 (1C) in the binary Parquet format. The functions then downsample the transformed data and return it the client’s browser in JSON format
(1E) to be plotted (1F). If a user wishes to see more detail of a particular region (2A), the browser sends an asynchronous query containing the location
of the region for each plotted DNA sequence to a Lambda function (not shown). In parallel, each function converts the query into a SQL statement and
submit the query to S3 Select (2B). S3 Select scans the transformed DNA sequence and returns only the data in the region to the Lambda function, which
in turn downsamples to JSON (2C) and returns it to the user’s browser for plotting (2D).

taking advantage of further optimizations in memory man-
agement during transformation and increases in the total
amount of memory available to function invocations.

While this website was implemented using AWS, this ar-
chitecture is not exclusive to AWS. Google Cloud Platform
(GCP) offers both serverless computing and serverless data
querying via their BigQuery platform. Although both GCP
and AWS have similar offerings, it is nontrivial to change
cloud service providers due to each service provider’s use
of a proprietary application programming interface (API).
The issue of vendor lock-in via proprietary APIs is one
of the open problems in serverless computing (15), al-
though open-source tools such as the Serverless Framework
(https://www.github.com/serverless/serverless) and Apache
OpenWhisk (https://openwhisk.apache.org) show promise
for ameliorating this issue.

CONCLUSION

This web tool serves as a demonstration of the applicabil-
ity of serverless computing to computational molecular bi-
ology as well as a useful tool to quickly gain an intuitive
visual overview of DNA sequences. While not all applica-
tions are amenable to serverless computing, those that are
may achieve greater performance with decreased cost and
development complexity, a significant advantage over tradi-
tional web architectures. By making sequence visualization
fast and simple as well as by providing an open-source ex-
ample of serverless computing and data retrieval, this tool
aims to make both of these valuable techniques more widely
used within the biological research community.
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