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Ambiviricota, a novel ribovirian phylum for viruses with viroid-
like properties
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ABSTRACT Fungi harbor a vast diversity of mobile genetic elements (MGEs). Recently, 
novel fungal MGEs, tentatively referred to as ‘ambiviruses,’ were described. ‘Ambiviruses’ 
have single-stranded RNA genomes of about 4–5 kb in length that contain at least two 
open reading frames (ORFs) in non-overlapping ambisense orientation. Both ORFs are 
conserved among all currently known ‘ambiviruses,’ and one of them encodes a distinct 
viral RNA-directed RNA polymerase (RdRP), the hallmark gene of ribovirian kingdom 
Orthornavirae. However, ‘ambivirus’ genomes are circular and predicted to replicate 
via a rolling-circle mechanism. Their genomes are also predicted to form rod-like 
structures and contain ribozymes in various combinations in both sense and antisense 
orientations—features reminiscent of viroids, virusoids, ribozyvirian kolmiovirids, and 
yet-unclassified MGEs (such as ‘epsilonviruses,’ ‘zetaviruses,’ and some ‘obelisks’). As a first 
step toward the formal classification of ‘ambiviruses,’ the International Committee on 
Taxonomy of Viruses (ICTV) recently approved the establishment of a novel ribovirian 
phylum, Ambiviricota, to accommodate an initial set of 20 members with well-annotated 
genome sequences.

KEYWORDS Ambiviricota, ambiviricot, ambivirus, Ascomycota, Basidiomycota, 
deltavirus, fungi, fungus, hairpin, hammerhead, ICTV, International Committee on 
Taxonomy of Viruses, phylum, Riboviria, ribozyme, twister, viroid, virus classification, virus 
nomenclature, virus taxonomy

T he term ‘ambiviruses’ was first used for a group of unique mobile genetic ele­
ments (MGEs) with RNA genomes discovered in isolates of agaricomycete (Cerato­

basidiaceae: Ceratobasidium sp. and Tulasnellaceae: Tulasnella sp.) and sordariomycete 
[Cryphonectriaceae: Cryphonectria parasitica (Murrill) M.E.Barr (1978)] fungi (1, 2). Soon 
after, several other ‘ambiviruses’ were characterized from mostly agaricomycetes [e.g., 
physalacriaceaen Armillaria spp., bondarzewiaceaen Heterobasidion spp., ceratobasidia­
ceaen Rhizoctonia spp., and phanerochaetaceaen Phlebiopsis gigantea (Fr.) Jülich (1978)] 
(3–5). These newly discovered MGEs were labeled “orphan-encoding sequences” because 
they contained open reading frames (ORFs) encoding products that, at the time of 
discovery, were not homologous to any of the protein sequences in the non-redundant 
protein database, as determined by Basic Local Alignment Search Tool (BLAST) compar­
ison. These candidate viruses were missed in previous, highly comprehensive similarity-
based virus-discovery searches in large metatranscriptomic datasets (6–8).

‘Ambiviruses’ from axenically cultured fungi have single-stranded RNA genomes that 
are 4.3–5.2 kb in length and encode at least two conserved proteins from non-overlap­
ping ORFs in ambisense orientation (ORF-A and ORF-B) (Fig. 1). Some of these genomes 
have a third ORF that encodes proteins with sequences not conserved among the 
clade members. ORF-A encodes a highly divergent RNA-directed RNA polymerase (RdRP) 
containing typical A, B, and C motifs in the palm subdomain (9). ORF-B encodes a protein 
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conserved among ‘ambiviruses.’ The protein has no significant sequence or (predicted) 
structural similarity to functionally characterized proteins. Nevertheless, careful analysis 
of the ORF-B structure revealed the presence of two RNA recognition motifs (RRMs), with 
the second RRM resembling the palm domain of RdRPs and reverse transcriptases (RTs); 
however, neither RRM contains active site residues (M. Krupovic, personal observation). 
Thus, it is conceivable that the ORF-B-encoded protein is a cofactor for some aspects of 
genome replication.

Unlike most other described RNA viruses, ‘ambiviruses’ possess covalently closed 
circular RNA (cccRNA) genomes folding in a compact rod-like or branched secon­
dary structure with the following ribozymes (Rzs) located at the 3′ termini of both 
ORFs: deltavirus ribozyme (DVRz), hammerhead ribozyme (HHRz), hairpin ribozyme 
(HPRz), and/or twister ribozyme (TWRz) (9, 10) (Fig. 1 and 2). Ribozyme activity 
and rolling-circle replication were experimentally confirmed in vitro and in vivo for 
three described ‘ambiviruses:’ Cryphonectria parasitica ambivirus 1 (CpAV1), Tullasnella 
ambivirus 1 (TuAV1), and Tulasnella ambivirus 4 (TuAV4) (9). Together, these findings 
identified ‘ambiviruses’ as hybrids of viruses currently classified in realm Riboviria, 
kingdom Orthornavirae [which are defined as RNA viruses encoding RdRPs (11, 12)]; 
non-RdRP-encoding ribozyme-containing circular RNA viruses in realm Ribozyviria, family 
Kolmioviridae (hepatitis D virus 1 and relatives) (13); and, by extrapolation from those, 
viroids of the family Avsunviroidae (14), small circular single-stranded satellite RNAs 
(virusoids) (15), ‘epsilonviruses’ (7, 16), ‘zetaviruses’ (7), and ‘obelisks’ (17).

FIG 1 Genome organization and ribozymes of representative ‘ambiviruses.’ (a) Genome organization of ‘ambiviruses’ (sense: 5′→3′). (b–e) Secondary structures 

of the ribozymes contained in the plus (+) and minus (−) strands of representative ‘ambiviruses’ belonging to four distinct clades. Homologous ribozymes are 

shown with matching colors (red and green, respectively). ORF, open reading frame; Rz, ribozyme; HHRz, hammerhead ribozyme; HPRz, hairpin ribozyme. Arrows 

indicate self-cleavage sites.
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‘AMBIVIRUS’ DIVERSITY

Hundreds of ‘ambivirus’ genome sequences have been recently described (9, 18) (Fig. 2 
and 3). For instance, a study of 46,500 fungal transcriptomes identified more than 2,500 
‘ambivirus’ sequences that encode proteins with as little as 27% identity to previously 
described proteins; these 2,500 sequences likely represent genomes of at least 345 
distinct ‘ambiviruses’ (18). Unsurprisingly, novel ‘ambiviruses’ continue to be discovered 
(19–22). Based on the organisms used for discovery, ‘ambiviruses’ infect fungi of at least 
four taxonomic divisions (Ascomycota, Basidiomycota, Chytridiomycota, and Glomero­
mycota). Of the discovered sequences, the biological host isolate has been experimen­
tally validated and the viral genome confirmed by Sanger sequencing in basidiomycetes 
of Armillaria spp. (3, 21), Heterobasidion spp. (4, 23), and Phlebiopsis gigantea (5) and 
in two ascomycetes [C. parasitica and Gibberella zeae (Schwein.) Petch, (1936)] (formerly 
Fusarium graminearum) (2, 19). It is worth noting that these ‘ambiviruses’ are from fungi 
that are root associated except for C. parasitica, which is a tree trunk pathogen that is 
capable of a saprophytic lifestyle in soil. Given the enormous overall diversity of fungi, it 
is likely that the majority of unique ‘ambiviruses’ remain to be discovered.

ESTABLISHMENT OF PHYLUM AMBIVIRICOTA

To establish a framework for their initial formal classification, we analyzed the sequence 
dataset available at the beginning of 2023 to identify exemplar ‘ambiviruses’ with well-
annotated genome sequences. The RdRPs encoded by ORF-A of the identified 23 viruses 
were analyzed for phylogeny (Fig. 4) and pairwise sequence similarity (Fig. 5). The 23 
viruses formed four bootstrap-supported clades (Fig. 4 and 5). A preliminary species 
demarcation threshold of 90% pairwise sequence identity among translated ORF-A 
sequences supported their assignment to 20 distinct species.

FIG 2 ‘Ambivirus’ diversity. Maximum-likelihood phylogenetic tree of ‘ambivirus’ RNA-directed RNA polymerase (i.e., ORF-A-encoded protein) palmprints of 439 

distinct species-like operational taxonomic units. ORF, open reading frame; DVRz, deltavirus ribozyme; HHRz, hammerhead ribozyme; HPRz, hairpin ribozyme; 

TWRz, twister ribozyme. Sites of self-cleavage are indicated with arrows. Adapted from Fig. 2 in Forgia et al. 2023 (9).
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Based on these analyses, we proposed an initial taxonomic framework for the 
classification of these ‘ambiviruses’ to the International Committee on Taxonomy of 
Viruses (ICTV) in 2023 (29) that was approved and ratified in April 2024. The taxonomic 
framework will likely suffice to accommodate at least the already-known hundreds of 
unclassified ‘ambiviruses’ through the establishment of classes, orders, families, and 
genera. Due to the currently known diversity of ‘ambiviruses’ (Fig. 2 and 3), we conserva­
tively proposed the establishment of four monogeneric families in a single order 
(Crytulvirales) and class (Suforviricetes) in a novel phylum Ambiviricota (Fig. 6).

Ambiviricots that form monophyletic clades in the RdRP phylogeny possess distinct 
types of ribozymes (Fig. 2), indicating that the two characters evolved independently of 
each other and are likely acquired/exchanged horizontally. The placement of ambiviri­
cots within the global phylogenetic tree of RdRPs of members of the Riboviria remains 
ambiguous because of the substantial genetic divergence among them. However, 
comparisons based on predicted tertiary protein structures cluster ambiviricot RdRPs 
within Orthornavirae (30). Thus, due to the conservation of the RdRP, the hallmark protein 
of ribovirian orthornaviraens, being the only feature unifying ambiviricots, we proposed 
that phylum Ambiviricota be included in kingdom Orthornavirae.

FIG 3 ‘Ambivirus’ diversity in fungal transcriptomes. Maximum-likelihood phylogenetic tree of ‘ambivirus’ RNA-directed RNA polymerases (i.e., ORF-A-encoded 

proteins), mid-point pseudo-rooted. Branches are colored according to the fungal division of the Sequence Read Archive (SRA) experiment from which the viral 

sequences were discovered. The scale bar is in average amino acid substitutions per site. Adapted from Fig. 3 in Chong and Lauber 2023 (18).
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OUTLOOK

The now-established Ambiviricota taxonomy will likely undergo rather drastic expansion 
in the immediate future. Beyond that, major questions will have to be addressed. As of 
now, Ambiviricota is a virus phylum. Per the ICTV’s International Code of Virus Classifica-
tion and Nomenclature (ICVCN) Rule 3.3,

FIG 4 Phylogeny of ‘ambiviruses’ with well-annotated genome sequences. Phylogenetic tree based upon alignment of deduced amino acid sequences of 

well-annotated ‘ambivirus’ RNA-directed RNA polymerases (i.e., ORF-A-encoded proteins). Viruses written in bold font were used for the official taxonomic 

proposal to establish a phylum (see also Fig. 6). Alignment was performed with MAFFT v.7.525 (24, 25), whereas tree topology was calculated with the 

maximum-likelihood methodology implemented in IQ-TREE (26) using the ultrafast bootstrap method. The final version of the tree was drawn with Interactive 

Tree of Life (iTOL) v.6.9 (27). ORF, open reading frame.
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“[v]iruses sensu stricto are defined … as a type of MGEs that encode at least 
one protein that is a major component of the virion encasing the nucleic 
acid of the respective MGE and therefore the gene encoding the major 
virion protein itself; or MGEs that are clearly demonstrable to be members 
of a line of evolutionary descent of such major virion protein-encoding 
entities …” (31, 32).

Yet, it is currently unclear whether ambiviricot genomes are encapsidated, i.e., 
whether ORF-B encodes a protein akin to a capsid protein (CP). Given that many 
viral capsid proteins have been exapted from preexisting functionally diverse proteins 
(33), the possibility that the ORF-B-encoded protein functions in genome encapsidation 
cannot be ruled out but appears less likely than its involvement in genome replication. 
However, the apparent preferential distribution of ambiviricots in fungi is consistent 
with the capsid-less nature of many families of fungal viruses that are believed to have 
lost their capsid genes, switching to exclusively intracellular replication through fungal 
syncytia. Thus, whether ambiviricots should be considered viruses hinges on whether 
they have evolved from bona fide capsid-encoding viruses; yet, the evolutionary history 
of ambiviricots is currently unclear. However, all ambiviricots encode RdRPs, enabling 
their clustering with other RdRP-encoding viruses, all of which are classified within 
Orthornavirae. Indeed, no non-viral MGEs have been identified to encode palm-domain 
RdRPs thus far, supporting the placement of ambiviricots within a viral realm.

The taxonomic positioning of ambiviricots in Orthornavirae is associated with high 
uncertainty. Ambiviricots are highly reminiscent of non-RdRP-encoding ribozyme-con­
taining circular RNA viruses (realm Ribozyviria: family Kolmioviridae) (13) and similar 
elements [such as viroids of the family Avsunviroidae (14), virusoids (15), ‘epsilonviruses’ 
(7, 16), ‘zetaviruses’ (7), and some ‘obelisks’ (17)], all of which have ribozyme-contain­
ing cccRNA genomes that replicate via the rolling-circle mechanism with the help of 
host-cell polymerases. Kolmiovirids are currently defined as negative-sense RNA viruses 
that exclusively have DVRzs and encode homologs of delta antigen (DAg). They infect 
animals and may require helper viruses for infection (13). Viroids of the family Avsunvir­
oidae are defined as naked cccRNAs that contain ribozymes, do not encode proteins, 
and replicate autonomously in the absence of co-infection with a helper virus (14). 
Virusoids are basically viroids that are encapsidated with the help of co-infecting viruses 
(15). ‘Epsilonviruses,’ ‘zetaviruses,’ and ‘obelisks’ are at least superficially most similar to 
kolmiovirids in that they encode proteins and contain ribozymes, but their proteins 
bear little or no resemblance to DAg, and they often have ribozymes other than DVRzs 

FIG 5 Percent (%) sequence identity of ‘ambiviruses’ (bold) with well-annotated genome sequences. Sequence identity matrix of RNA-directed RNA polymerase 

(i.e., ORF-A-encoded protein) sequences of all ‘ambiviruses’ used for the establishment of the initial taxonomic framework. Pairwise alignment was performed 

using Clustal Omega v1.2.4 (25, 28). Shades of color intensity from blue to red represent increasing percentiles of identity. ORF, open reading frame.
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(7, 16, 17). In the absence of any discernible evolutionary markers, ambiviricots could 
be regarded to be in the same group as these three types of MGEs were it not for 
the encoded RdRP, the function of which in ambiviricots is yet to be experimentally 
demonstrated. The biological characterization of ambiviricots is only in its infancy, and 
infectious cDNA clones for in-depth studies have yet to be developed. However, in 
at least two cases (CpAV1 and Fusarium graminearum ambivirus 1), effects on fungal 
virulence and on mycotoxin production, respectively, were experimentally demonstrated 
(9, 19). Together, the growing knowledge about ambiviricots and other cccRNA MGEs/
viruses will likely spur discussions about whether their definitions ought to be amended 
and potentially lead to increased laboratory experimentation to shed light on their life 
cycles, evolution, and significance.

BOX 1. ETYMOLOGY OF ESTABLISHED TAXA IN FIG. 6

• Ambiviricota: after ‘ambivirus’ and phylum-specific suffix -viricota

• ambivirus: after Latin ambi, meaning “both” (ambiguous) and “around” 
(ambient), a reference to these mobile genetic elements (MGEs) having features 
of both orthornaviraens and ribozyme-encoding entities

• armillariae: after the host genus

• cryphonectriae: after the host genus

• Crytulvirales: after Cryphonectria and Tulasnella, the genera for fungi in which 
‘ambiviruses’ were first discovered, and order-specific suffix -virales

• duarmillariae: after the host genus and Latin duo, meaning “two”

• duatulasnellae: after the host genus and Latin duo, meaning “two”

• Dumbiviridae: after Latin duo, meaning “two;” ‘ambivirus;’ and family-specific 
suffix -viridae

• duoheterobasidii: after the host genus and Latin duo, meaning “two”

• Ortho-: after Greek prefix ortho, meaning “straight”

• phlebiopsis: after the host genus

• Quambiviridae: after Latin quattuor, meaning “four;” ‘ambivirus;’ and family-spe­
cific suffix -viridae

FIG 6 Current ambiviricot taxonomy (Riboviria: Orthornavirae: Ambiviricota: Suforviricetes: Crytulvirales). See Box 1 for etymology of established taxa.
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• rhizoctoniae: after the host genus

• Suforviricetes: after Sutela and Forgia, the first authors of the first two papers 
describing ‘ambiviruses’ (1, 2); and class-specific suffix -viricetes

• triarmillariae: after the host genus and Latin tria, meaning “three”

• Trimbiviridae: after Latin tria, meaning “three;” ‘ambivirus;’ and family-specific 
suffix -viridae

• tritulasnellae: after the host genus and Latin tria, meaning “three”

• Unambiviridae: after Latin unus, meaning “one;” ‘ambivirus;’ and family-specific 
suffix -viridae

• unarmillariae: after the host genus and Latin unus, meaning “one”

• unatulasnellae: after the host genus and Latin unus, meaning “one”

• unoheterobasidii: after the host genus and Latin unus, meaning “one”
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